a2 United States Patent

DeCusatis et al.

US009246755B2

(10) Patent No.: US 9,246,755 B2
(45) Date of Patent: Jan. 26, 2016

(54) SOFTWARE-DEFINED NETWORKING
DISASTER RECOVERY

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Casimer M. DeCusatis, Poughkeepsie,
NY (US); Rajaram B. Krishnamurthy,
Wappingers Falls, NY (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/501,221
(22) Filed: Sep. 30, 2014

(65) Prior Publication Data
US 2015/0172102 Al Jun. 18, 2015
Related U.S. Application Data
(63) Continuation of application No. 14/132,143, filed on

(58) Field of Classification Search
USPC ottt 370/216
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,269,405 B1* 7/2001 Dutcheretal. 709/248
8,819,344 B1* 82014 Faibishetal. 711147
2002/0007468 Al* 1/2002 Kampeetal. 714/4
2011/0035754 Al 2/2011 Srinivasan
2012/0096149 Al 4/2012 Sunkara et al.
2014/0059225 Al* 2/2014 Gasparakisetal. 709/226
2015/0117216 Al* 4/2015 Anandetal. ... 370/236

* cited by examiner

Primary Examiner — Mark Rinehart
Assistant Examiner — Ellen A Kirillova

(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
Steven Chiu

(57) ABSTRACT

Embodiments relate to software-defined networking (SDN)
disaster recovery. An aspect is a computer-implemented
method that includes establishing a plurality of flows, by an

Dec. 18, 2013. SDN controller, between a plurality of switches and pairs of
servers in a network, including at least two different pairs of
(51) Int.CL server types. Each server type runs a different operating sys-
HO4L 12724 (2006.01) tem and a different disaster recovery manager in an active/
HO4L 12/703 (2013.01) active configuration. Data migration is controlled, by the
HO4L 12726 (2006.01) SDN controller, between the pairs of servers in the network.
HO4L 127721 (2013.01) The SDN controller dynamically reallocates the flows
(52) US.CL between the switches and the pairs of servers in the network
CPC HO4L 41/0668 (2013.01); HO4L 43/0876 based on detecting a fault in the network.
(2013.01); HO4L 45/28 (2013.01); HO4L 45/38
(2013.01) 12 Claims, 4 Drawing Sheets
400
__402
Establish a plurality of flows between a plurality of switches and
pairs of servers in a network, including at least two different pairs
of server types, where each server type is running a different
operating system and a different disaster recovery manager in an
active/active configuration
_..404
Y
Control data migration between the pairs of servers in the
network
- 406
v 4
Dynamically reallocate the flows between the switches and the
pairs of servers in the network based on detecting a fault in the
network

US 9,246,755 B2

Sheet 1 of 4

Jan. 26, 2016

U.S. Patent

WA

SO

™M

mﬁﬂ/z

s31e1S

0z1
k24
veT
_J
91
8zl
€T

pzol

Q
Q
i

US 9,246,755 B2

Sheet 2 of 4

Jan. 26, 2016

U.S. Patent

<51

upTZ - -

4

q0TT-—,

1H0Od “en

1d40d

BOTZ-~ -,

140d

1901

Hid4ng i Y3ding HOLIMS

4/13NI

ugoz " e80T 207

sanspeas | uondy | ajny

gtz {~ vz . e

JOMUON dijjed] .

sof3sfiels | uondy sjny

J

oze g1z | T

Yt 1ave
MOH

S0¢

T1¢

JHNO3S

140ddns
10201044

soz

[Xo)
(=]
o]

US 9,246,755 B2

Sheet 3 of 4

Jan. 26, 2016

U.S. Patent

0c¢

1333

€ 'Old
[
SYW
SIEIN
1] ss¢
[S9Y S:QEOU 11 S/O G1¢c — 71¢ 00¢ 2oelog]
mdnoandug weq || o 31E ey || OHOMION
— - || @S v:owﬁm uonoy
Gl epponuo) IOAID Dye sz
K10wop 01507 S - F ¢ o8eimg
poamwop || FIE iTE oTE
e d10d JISRUBIN S9Iqe] S0¢
‘ NdS
43 %mwwwmcoo dnyoeg SJLOMIAN MOLq Anmoir)y
- 01¢ AI0WS BuIsse001g

10¢

(48!

U.S. Patent Jan. 26, 2016 Sheet 4 of 4 US 9,246,755 B2

Establish a plurality of flows between a plurality of switches and
pairs of servers in a network, including at least two different pairs
of server types, where each server type is running a different
operating system and a different disaster recovery manager in an

active/active configuration

l 404

Control data migration between the pairs of servers in the
network

l 406

Dynamically reallocate the flows between the switches and the
pairs of servers in the network based on detecting a fault in the
network

FIG. 4

US 9,246,755 B2

1
SOFTWARE-DEFINED NETWORKING
DISASTER RECOVERY

DOMESTIC PRIORITY

This application is a continuation of U.S. application Ser.
No. 14/132,143 filed Dec. 18, 2013, the disclosure of which is
incorporated by reference herein in its entirety.

BACKGROUND

The present invention relates generally to software-defined
networking, and more specifically, to a software-defined net-
working disaster recovery.

High-reliability storage systems typically use data replica-
tion to maintain a secondary copy of data stored in a primary
volume. A systems complex, also referred to as a sysplex, is
an example of a high-reliability system that allows multiple
logical partitions to communicate and coordinate synchro-
nized data storage and access for large-scale data storage and
management. A parallel sysplex provides data sharing capa-
bilities for accessing multiple databases to read and write as
shared data. System members are synchronized using timers
and a coupling facility for data sharing. A geographically
dispersed parallel sysplex (GDPS) environment enables a
parallel sysplex to be at geographically separate sites while
maintaining coordinated data system management; however,
the GDPS environment need not be geographically separated.
A GDPS environment in combination with peer-to-peer
remote copy (GDPS/PPRC) enables synchronous data mir-
roring using PPRC volume pairs (i.e., primary and secondary
volumes) for systems that can be separated by substantial
distances, e.g., 120 miles. PPRC is an example of a synchro-
nous replication technology. In a two system configuration,
GDPS/PPRC allows the systems at separate sites to be admin-
istered as a single system. In the event of a system or storage
device failure, recovery can be initiated automatically with
minimal or no data loss.

A data center can include a variety of systems and servers
running different operating systems and workloads that may
not be directly compatible. A cluster manager can use man-
aged replication with linked clusters to manage backup and
recovery operations in systems that are not compatible with a
GDPS environment. Multiple system and server types make
orchestration of disaster recovery operations difficult, par-
ticularly where some systems run ina GDPS environment and
others do not.

SUMMARY

An aspect is a computer-implemented method for soft-
ware-defined networking (SDN) disaster recovery. The
method includes establishing a plurality of flows, by an SDN
controller, between a plurality of switches and pairs of servers
in a network, including at least two different pairs of server
types. Each server type runs a different operating system and
a different disaster recovery manager in an active/active con-
figuration. Data migration is controlled, by the SDN control-
ler, between the pairs of servers in the network. The SDN
controller dynamically reallocates the flows between the
switches and the pairs of servers in the network based on
detecting a fault in the network.

Another aspect is a computer program product for SDN
disaster recovery. The computer program product includes a
tangible storage medium readable by a processing circuit and
storing instructions for execution by the processing circuit for
performing a method. The method includes establishing a

10

15

20

25

30

35

40

45

50

55

60

65

2

plurality of flows, by an SDN controller, between a plurality
of switches and pairs of servers in a network, including at
least two different pairs of server types. Each server type runs
a different operating system and a different disaster recovery
manager in an active/active configuration. Data migration is
controlled, by the SDN controller, between the pairs of serv-
ers in the network. The SDN controller dynamically reallo-
cates the flows between the switches and the pairs of servers
in the network based on detecting a fault in the network.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as embodiments is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the embodiments are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 depicts a system for software-defined networking
(SDN) disaster recovery in accordance with an embodiment;

FIG. 2 depicts a block diagram of a switch of the system of
FIG. 1 according to an embodiment;

FIG. 3 depicts a block diagram of an SDN controller of the
system of FIG. 1 in accordance with an embodiment; and

FIG. 4 depicts a process flow for SDN disaster recovery in
accordance with an embodiment.

DETAILED DESCRIPTION

Exemplary embodiments include a system, method, and
computer program product for software-defined networking
(SDN) disaster recovery. An SDN controller is provided that
manages both a physical and virtual infrastructure of a net-
work and manages servers running different operating sys-
tems attached to the network. The SDN controller can access
information such as server and network topology, available
server input/output (I/0) bandwidth, and available network
bandwidth. The SDN controller may use the information in
order to prioritize and/or reallocate server and network
resources programmatically by migrating workloads (i.e.,
applications) to available resources for continuity between a
primary and secondary location. In order to manage servers in
the network, the SDN controller can access management
interfaces on the servers to insure that updates to a secondary
server remain consistent with updates to a primary server for
active/active server clusters. The SDN controller can also
maintain records of states for affected data sets on the servers.

Rather than running separate networks and requiring serv-
ers of different server types (e.g., different hardware and
operating systems configurations) to know protocol and pro-
cessing details about each other, the SDN controller acts as a
network manager and data mover for the servers. The SDN
controller can manage and control application-aware network
traffic flows in a network in which several applications are
running on servers at substantially the same time. An appli-
cation running in the network is referred to as a workload. The
servers and network resources, such as switches, may be
referred to generally as nodes of the network, where network
traffic is routed through a number of intermediate nodes
between network endpoints forming a flow or flow path. The
system provides visibility of network traffic flows to SDN
control logic, which is a program executed in an SDN con-
troller that allocates bandwidth and resources. The SDN con-
troller can also establish priority on a per-workload basis
based on flow classification. Header information in network

US 9,246,755 B2

3

traffic can be used to classify flows based on source, destina-
tion, protocol, and other such information.

Turning now to FIG. 1, an example of a system 100 includ-
ing a network 101 that supports software-defined networking
(SDN) will now be described in greater detail. In the example
depicted in FIG. 1, the system 100 includes a plurality of
servers 102 configured to communicate over the network 101
using switches 106 that are SDN-capable, e.g., OpenFlow-
compatible. In FIG. 1, five switches 106a, 1065, 106¢, 1064,
and 106e¢ are depicted for purposes of explanation; however,
the scope of embodiments is not so limited and may include
any number of switches 106. The network 101 can be geo-
graphically distributed between multiple physical locations
including a first geographic location 107 (e.g., a primary
location) and a second geographic location 109 (e.g., a sec-
ondary location). The network 101 can also include other
systems and access points (not depicted), such as client sys-
tems and firewalls for local and/or external network access.

In exemplary embodiments, the servers 102, also referred
as hosts or host systems, are high-speed processing devices
(e.g., mainframe computers, desktop computers, laptop com-
puters, hand-held devices, embedded computing devices, or
the like) including at least one processing circuit (e.g., a
computer processor/CPU) capable of reading and executing
instructions, and handling interactions with various compo-
nents of the system 100. One or more of the servers 102 may
be storage system servers configured to access and store large
amounts of data 108.

In the example of FIG. 1, the first geographic location 107
includes a first primary server 102¢ and second primary
server 1024, and the second geographic location 109 includes
a first secondary server 102¢ and a second secondary server
102d. The first primary server 102a and the first secondary
server 102¢ form a first pair of servers 114, and the second
primary server 10256 and the second secondary server 1024
form a second pair of servers 116. In an exemplary embodi-
ment, the first pair of servers 114 and the second pair of
servers 116 each has a different server type. For example, the
first primary server 102q and the first secondary server 102¢
may be System z servers, while the second primary server
1024 and the second secondary server 1024 may be Linux,
UNIX, or Windows systems.

Multiple links 105 that can collectively form flows 118
may be provided between the servers 102a-d and switches
106a-e. For instance, between the first pair of servers 114 an
active flow can be established as an operating connection that
includes multiple active links 105 and a backup flow can be
established that as a backup connection includes multiple
backup links 105 such that upon detecting a fault in the active
flow, the backup flow can be reallocated as the active flow. An
example of this is depicted in FIG. 1 for the second pair of
servers 116, where an active flow 118a is established as an
operating connection for active links 105 between the second
primary server 1025, switch 106e, and the second secondary
server 102d. A backup flow 1185 is established as a backup
connection for backup links 105 between the second primary
server 1025, switch 1064, switch 1065, switch 1064, and the
second secondary server 1024. If switch 106e fails, then
existing network traffic flowing on the backup flow 1185 can
be dropped and network traffic from the active flow 1184 may
be reallocated to the backup flow 1185 such that the backup
flow 11856 becomes a new active flow for the second pair of
servers 116. The backup flow 1185 may have a lower network
bandwidth allocation than the active flow 118a. Therefore,
upon reallocation of the backup flow 11856, additional net-
work bandwidth may be added, e.g., provisioning additional
links 105 if available.

25

30

35

40

45

55

4

Each of the servers 102a-d can include a disaster recovery
manager (DRM) 120, management interface 122, a virtual
machine 124, an operating system 126, a workload 128, and
states 130. Although only a single instance of the disaster
recovery manager 120, management interface 122, virtual
machine 124, operating system 126, workload 128, and states
130 is depicted for the first primary server 1024 in FIG. 1, it
will be understood that each of the servers 102a-d can include
one or more instances of the disaster recovery manager 120,
management interface 122, virtual machine 124, operating
system 126, workload 128, and states 130. The disaster recov-
ery manager 120 may be of a first type for the first pair of
servers 114 and of a second type for the second pair of servers
116. In one embodiment, a first disaster recovery manager
120 of the first pair of servers 114 is a geographically dis-
persed parallel sysplex (GDPS) with a System Data Mover,
and a first operating system 126 of the first pair of servers 114
is IBM z/OS. A second disaster recovery manager 120 of the
second pair of servers 116 may be a Veritas Cluster Manager,
and a second operating system 126 of the second pair of
servers 116 may be, for example, a Linux, UNIX, or Windows
operating system (also referred to generally as K-Systems).
The disaster recovery manager 120 may operate in an active/
active configuration across the first and second pairs of serv-
ers 114 and 116. In an active/active configuration, continuous
availability with disaster recovery is supported based on two
or more sites (e.g., geographic locations 107, 109) running
substantially the same applications (e.g., one or more work-
loads 128) and having substantially the same data 108 to
provide cross-site workload balancing.

The management interface 122 can provide access to the
states 130 that define information about the workload 128 and
data 108, such as content information and when each was last
updated. Accordingly, comparing the states 130 across the
primary and secondary servers 102a, 102¢ or 1025, 102d can
assist in identifying differences that indicate updating of the
respective secondary server 102¢ or 1024 is needed. The
management interfaces 122 can also expose server input/
output bandwidth information. In an embodiment, a same
version and type of the operating system 126 is run on both the
first primary server 102a and the first secondary server 102c¢,
while a different operating system 126 is run on the second
pair of servers 116 such that server-initiated data movement
may be difficult from the first pair of servers 114 to the second
pair of servers 116.

The system 100 also includes an SDN controller 112 that is
a central software-defined network controller configured to
make routing and data movement decisions within the net-
work 101. The SDN controller 112 establishes secure links
103 to configure the switches 106 and communication prop-
erties of links 105 between the switches 106. For example, the
SDN controller 112 can configure the switches 106 to control
packet routing paths for data flows between the servers 102.
The SDN controller 112 can also configure the switches 106
to define flows between the servers 102, virtual machines 124,
operating systems 126, and workloads 128 running on the
servers 102. One or more secure links 103 may also be defined
between the SDN controller 112 and the servers 102 to pro-
vide the SDN controller 112 with access to the management
interface 122 and states 130, among other resources.

The servers 102 and SDN controller 112 can include vari-
ous computer/communication hardware and software tech-
nology known in the art, such as one or more processing units
or circuits, volatile and non-volatile memory including
removable media, power supplies, network interfaces, sup-
port circuitry, operating systems, and the like. Although the
SDN controller 112 is depicted as a separate component, it

US 9,246,755 B2

5

will be understood that SDN controller functionality can
alternatively be implemented in one or more of the servers
102.

The network 101 can include a combination of wireless,
wired, and/or fiber optic links. The network 101 as depicted in
FIG. 1 represents a simplified example for purposes of expla-
nation. For example, each of the links 105 depicted in the
network 101 can include more than one physical link.
Embodiments of the network 101 can include numerous
switches 106 (e.g., hundreds) with dozens of ports and links
per switch 106. The switches 106 are also referred to gener-
ally as network resources and may represent any type of
device that is capable of forwarding data through one or more
ports. The network 101 may support a variety of known
communication standards that allow data to be transmitted
between the servers 102, switches 106, and/or SDN controller
112. Communication protocols are typically implemented in
one or more layers, such as a physical layer (layer-1), a link
layer (layer-2), a network layer (layer-3), a transport layer
(layer-4), and an application layer (layer-5). In exemplary
embodiments, the network 101 supports SDN as a layer-2
protocol. The switches 106 can be dedicated SDN switches or
SDN-enabled general purpose switches that also support
layer-2 and layer-3 Ethernet.

FIG. 2 depicts a block diagram of one of the switches
106a-¢ of FIG. 1 that supports SDN as switch 106. The switch
106 of FIG. 2 includes switch logic 202, secure link interface
204, protocol support 205, flow table 206, buffers 208a-208x,
and ports 210a-210z. The switch 106 can also include traffic
monitor 220 to monitor network traffic locally to determine
network traffic performance metrics and provide the network
traffic performance metrics to the SDN controller 112 of FIG.
1. The switch logic 202 may be implemented in one or more
processing circuits, where a computer readable storage
medium is configured to hold instructions for the switch logic
202 and/or the traffic monitor 220, as well as various variables
and constants to support operation of the switch 106. The
switch logic 202 forwards network traffic (e.g., packets)
between the ports 210a-210% as flows defined by the SDN
controller 112 of FIG. 1.

The secure link interface 204 connects the switch 106 to the
SDN controller 112 viaasecure link 103 of FIG. 1. The secure
link interface 204 allows commands and packets to be com-
municated between the SDN controller 112 and the switch
106 using an SDN protocol. The secure link interface 204 can
be controlled by executable instructions stored within the
switch 106. Protocol details to establish a protocol definition
for an implementation of SDN and other protocols can be
stored in the protocol support 205. The protocol support 205
may be software that defines one or more supported protocol
formats. The protocol support 205 can be embodied in a
computer readable storage medium, for instance, flash
memory, which is configured to hold instructions for execu-
tion by the switch logic 202. Implementing the protocol sup-
port 205 as software enables updates in the field for new
versions or variations of protocols and can provide SDN as an
enhancement to existing conventional routers or switches.

The flow table 206 defines supported connection types
associated with particular addresses, virtual local area net-
works or switch ports, for example. A flow may be defined as
all network traffic that matches a particular header format,
including use of wildcards. Each entry 211 in the flow table
206 can include one or more rules 212, actions 214, and
statistics 216 associated with a particular flow. The rules 212
define each flow and can be determined by packet headers.
The actions 214 define how packets are processed. The sta-
tistics 216 track information such as the size of each flow

10

15

20

25

30

35

40

45

50

55

60

65

6

(e.g., number of bytes), the number of packets for each flow,
and time since the last matching packet of the flow or con-
nection time. Examples of actions include instructions for
forwarding packets of a flow to one or more specific ports
2104a-210% (e.g., unicast or multicast), encapsulating and for-
warding packets of a flow to the SDN controller 112 of FIG.
1, and dropping packets of the flow. Entries 211 in the flow
table 206 can be added and removed by the SDN controller
112 of FIG. 1 via the secure link interface 204. The SDN
controller 112 of FIG. 1 can pre-populate the entries 211 in
the flow table 206. Additionally, the switch 106 can request
creation of an entry 211 from the SDN controller 112 upon
receiving a flow without a corresponding entry 211 in the flow
table 206.

The buffers 2084-208n provide temporary storage in
queues for flows as network traffic is sent between the ports
210a-210x. In a lossless configuration, rather than dropping
packets of network traffic when network congestion is
present, the buffers 208a-208% temporarily store packets until
the associated ports 210a-2107 and links 105 of FIG. 1 are
available. Each of the buffers 208a-208» may be associated
with a particular port, flow, or sub-network. Each of the
buffers 208a-208 is logically separate but need not be physi-
cally independent. Accordingly, when one of the buffers
208a-208n is full, it does not adversely impact the perfor-
mance of the other buffers 208a-208» within the switch 106.

FIG. 3 depicts a block diagram of the SDN controller 112
of FIG. 1 according to an embodiment. The SDN controller
112 can be embodied in any type of processing system and is
depicted embodied in a general-purpose computer 301 in
FIG. 3. The servers 102a-d of FIG. 1 can also include similar
computer elements as depicted in the computer 301 of FIG. 3.

In an exemplary embodiment, in terms of hardware archi-
tecture, as shown in FIG. 3, the computer 301 includes pro-
cessing circuitry 305 and memory 310 coupled to a memory
controller 315, and an input/output controller 335. The input/
output controller 335 can be, for example but not limited to,
one or more buses or other wired or wireless connections, as
is known in the art. The input/output controller 335 may have
additional elements, which are omitted for simplicity, such as
controllers, buffers (caches), drivers, repeaters, and receivers,
to enable communications. Further, the computer 301 may
include address, control, and/or data connections to enable
appropriate communications among the aforementioned
components.

In an exemplary embodiment, a conventional keyboard
350 and mouse 355 or similar devices can be coupled to the
input/output controller 335. Alternatively, input may be
received via a touch-sensitive or motion sensitive interface
(not depicted). The computer 301 can further include a dis-
play controller 325 coupled to a display 330.

The processing circuitry 305 is a hardware device for
executing software, particularly software stored in storage
320, such as cache storage, or memory 310. The processing
circuitry 305 can be any custom made or commercially avail-
able computer processor, a central processing unit (CPU), an
auxiliary processor among several processors associated with
the computer 301, a semiconductor-based microprocessor (in
the form of a microchip or chip set), a macro-processor, or
generally any device for executing instructions.

The memory 310 can include any one or combination of
volatile memory elements (e.g., random access memory
(RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvola-
tile memory elements (e.g., ROM, erasable programmable
read only memory (EPROM), electronically erasable pro-
grammable read only memory (EEPROM), flash memory,
programmable read only memory (PROM), tape, compact

US 9,246,755 B2

7

disc read only memory (CD-ROM), disk, hard disk drive,
diskette, cartridge, cassette or the like, etc.). Moreover, the
memory 310 may incorporate electronic, magnetic, optical,
and/or other types of storage media. Accordingly, the
memory 310 is an example of a tangible computer readable
storage medium upon which instructions executable by the
processing circuitry 305 may be embodied as a computer
program product. The memory 310 can have a distributed
architecture, where various components are situated remote
from one another, but can be accessed by the processing
circuitry 305.

The instructions in memory 310 may include one or more
separate programs, each of which comprises an ordered list-
ing of executable instructions for implementing logical func-
tions. Inthe example of F1G. 3, the instructions in the memory
310 include a suitable operating system (OS) 311, SDN con-
trol logic 312, and a network manager 313. The operating
system 311 essentially controls the execution of other com-
puter programs and provides scheduling, input-output con-
trol, file and data management, memory management, and
communication control and related services. Although
depicted separately, the SDN control logic 312 and network
manager 313 can be combined or further subdivided. When
the computer 301 is in operation, the processing circuitry 305
is configured to execute instructions stored within the
memory 310, to communicate data to and from the memory
310, and to generally control operations of the computer 301
pursuant to the instructions.

In an exemplary embodiment, the computer 301 can fur-
ther include a network interface 360 for coupling to the secure
links 103 of the network 101 of FIG. 1. The network interface
360 and components of the network 101 of FIG. 1 can be
configured by the SDN control logic 312 according to flow
tables 316, a match action table 317, a network topology 318,
a backup policy 314, and server state data 319. The network
topology 318 defines characteristics of the network 101 of
FIG. 1, such as network resource details (e.g., bandwidth,
physical connections available, virtual connections, resource
constraints) of the servers 102, links 105, and switches 106 of
FIG. 1. The flow tables 316 can be created based on the
network topology 318 and modified by the network manager
313. The flow tables 316 can be defined for each of the
switches 106 of FIG. 1 and deployed as instances of the flow
table 206 of FIG. 2 including mapping to specific ports 210a-
210n of FIG. 2. The match action table 317 can be used to
define specific conditions for the actions 214 in the flow table
206 of FIG. 2 and link flows across multiple switches 106 of
FIG. 1. The match action table 317 may include rules for
particular internet protocol (IP) addresses, media access con-
trol (MAC) addresses, virtual machine identifiers (e.g., for
virtual machine 124), operating system identifiers (e.g., for
operating system 126) and/or workload identifiers (e.g., for
workload 128), and match associated actions across the flow
tables 316.

Upon detecting or receiving network traffic performance
metrics from instances of the traffic monitor 220 of FIG. 2, the
network manager 313 can modify one or more of the flow
tables 316, match action table 317, and network topology 318
to improve overall performance of the network 101 of FIG. 1.
Accordingly, the network manager 313 can update the flow
tables 316, match action table 317, and network topology 318
to reflect differing data flow needs for backup, failure, and
recovery events. For instance, the match action table 317 may
include time-based rules to increase bandwidth during sched-
uled backup events. The backup policy 314 may define when
data 108 of FIG. 1 should be moved between the servers
102a-d of FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

8

In an embodiment, the network manager 313 integrates
functions from multiple different disaster recovery managers
120 of FIG. 1 (e.g., a first disaster recovery manager 120 of
the first pair of servers 114 and a second disaster recovery
manager 120 of the second pair of servers 116) to determine
which connections between the servers are available and pri-
oritized for use as backup or operating connections. The
network manager 313 may incorporate data movement fea-
tures of the disaster recovery managers 120 of FIG. 1, such as
active/active system management, to use both primary serv-
ers 102a, 1025, and secondary servers 102¢, 1024 until a
failure occurs, upon which a backup/secondary workload 128
is dropped at the corresponding secondary server 102¢, 1024
in favor of a higher priority primary workload 128 from a
corresponding primary server 102a, 1024.

The server state data 319 can be collected by the network
manager 313 through accessing the states 130 of FIG. 1 via
the management interface 122 of each of the servers 102a-d
of FIG. 1. The network manager 313 can compare the server
state data 319 for the first and second server pairs 114 and 116
of FIG. 1 and determine whether an update is needed due to
state differences. When it is determined that an update is
needed, data movement can be scheduled according to the
backup policy 314. The network manager 313 may also moni-
tor input/output bandwidth of the servers 102a-d of FIG. 1
and reallocate data 108 based on detecting an imbalance in the
input/output bandwidth, including movement of data
between servers 102 with different operating systems 126 at
a same geographic location. The network manager 313 may
also manage workload 128 migration between the servers
1024a-102d of FIG. 1.

FIG. 4 depicts a process 400 for providing SDN disaster
recovery as a computer-implemented method in accordance
with an embodiment. The process 400 is also described in
reference to FIGS. 1-3 and can be implemented by the system
100 of FIG. 1.

At block 402, the SDN controller 112 establishes a plural-
ity of flows 118 between a plurality of switches 106 and pairs
of'servers 114, 116 in the network 101, including at least two
different pairs of server types. Each server type runs a differ-
ent operating system 126 and a different disaster recovery
manager 120 in an active/active configuration.

At block 404, the SDN controller 112 controls data 108
migration between the pairs of servers 114, 116 in the net-
work 101. The SDN controller 112 can also manage workload
128 migration between the servers 102 and adjust the flows
118 based on network traffic and data movement require-
ments between the servers 102.

At block 406, the SDN controller 112 dynamically reallo-
cates the flows 118 between the switches 106 and the pairs of
servers 114,116 in the network 101 based on detecting a fault
in the network 101. The SDN controller 112 may analyze a
plurality of links 105 between the switches 106 and the serv-
ers 102 to identify active links 105 and backup links 105. The
SDN controller 112 can establish an active flow 1184 as an
operating connection including a plurality of the active links
105 between a first pair of the servers 114, and a backup flow
1185 as a backup connection including a plurality of the
backup links 105 between the first pair of the servers 114.
Based on detecting a fault in the active flow 118a, the backup
flow 1185 can be reallocated as the active flow. The same
process can be followed for the second pair of servers 116.

The SDN controller 112 can identify a primary server 102a
and a secondary server 102¢ in one of the pairs of servers 114
and access management interfaces 122 of the primary and
secondary servers 102a, 102¢ to retrieve states 130 of the
primary and secondary servers 102a, 102¢. Records of the

US 9,246,755 B2

9

states 130 can be stored in the SDN controller 112 as server
state data 319. The SDN controller 112 may compare the
states 130 to identify state differences between the primary
and secondary servers 1024, 102¢. The SDN controller 112
may move data 108 from the primary server 102a to the
secondary server 102¢ based on determining that an update of
the secondary server 102¢ is needed due to the state differ-
ences.

The SDN controller 112 can identify a first pair of the
servers 114 including a first primary server 1024 and a first
secondary server 102¢ of a first server type, and a second pair
of'the servers 116 including a second primary server 1026 and
a second secondary server 102d of a second server type. The
first and second primary servers 102a, 1025 may be at a first
geographic location 107 and the first and second secondary
servers 102¢, 102d can be at a second geographic location
109. The SDN controller 112 may also monitor input/output
bandwidth of the servers 102 and reallocate data 108 between
the servers 102 based on detecting an imbalance in the input/
output bandwidth. Reallocation by the SDN controller 112
can include reallocating the data 108 between the first and
second primary servers 102a, 1025 and replicating the real-
locating, by the SDN controller 112, between the first and
second secondary servers 102¢, 1024.

Technical effects and benefits include providing disaster
recovery using a software-defined networking controller.

As will be appreciated by one of average skill in the art,
aspects of embodiments may be embodied as a system,
method or computer program product. Accordingly, aspects
of embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as, for example, a “circuit,”
“module” or “system.” Furthermore, aspects of embodiments
may take the form of a computer program product embodied
in one or more computer readable storage device(s) having
computer readable program code embodied thereon.

One or more of the capabilities of embodiments can be
implemented in software, firmware, hardware, or some com-
bination thereof. Further, one or more of the capabilities can
be emulated.

An embodiment may be a computer program product for
enabling processor circuits to perform elements of the inven-
tion, the computer program product comprising a computer
readable storage medium readable by a processing circuitand
storing instructions for execution by the processing circuit for
performing a method.

The computer readable storage medium (or media), being
a tangible, non-transitory, storage medium having instruc-
tions recorded thereon for causing a processor circuit to per-
form a method. The “computer readable storage medium”
being non-transitory at least because once the instructions are
recorded on the medium, the recorded instructions can be
subsequently read one or more times by the processor circuit
at times that are independent of the time of recording. The
“computer readable storage media” being non-transitory
including devices that retain recorded information only while
powered (volatile devices) and devices that retain recorded
information independently of being powered (non-volatile
devices). An example, non-exhaustive list of “non-transitory
storage media” includes, but is not limited to, for example: a
semi-conductor storage device comprising, for example, a
memory array such as a RAM or a memory circuit such as
latch having instructions recorded thereon; a mechanically
encoded device such as punch-cards or raised structures in a
groove having instructions recorded thereon; an optically

10

15

20

25

30

35

40

45

50

55

60

65

10

readable device such as a CD or DVD having instructions
recorded thereon; and a magnetic encoded device such as a
magnetic tape or a magnetic disk having instructions
recorded thereon.

A non-exhaustive list of examples of computer readable
storage medium include the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), a portable com-
pact disc read-only memory (CD-ROM). Program code can
be distributed to respective computing/processing devices
from an external computer or external storage device via a
network, for example, the Internet, a local area network, wide
area network and/or wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface card in each computing/processing
device receives a program from the network and forwards the
program for storage in a computer-readable storage device
within the respective computing/processing device.

Computer program instructions for carrying out operations
for aspects of embodiments may be for example assembler
code, machine code, microcode or either source or object
code written in any combination of one or more programming
languages, including an object oriented programming lan-
guage such as Java, Smalltalk, C++ or the like and conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Aspects of embodiments are described below with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be under-
stood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions.

These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks. These computer program
instructions may also be stored in a computer readable stor-
age medium that can direct a computer, other programmable
data processing apparatus, or other devices to function in a
particular.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for

US 9,246,755 B2

11

implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments. In this regard,
each block in the flowchart or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci-
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart illus-
tration, can be implemented by special purpose hardware-
based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

What is claimed is:

1. A computer-implemented method for software-defined
networking (SDN) disaster recovery, the method comprising:

establishing a plurality of flows, by an SDN controller,

between a plurality of switches and pairs of servers in a
network, including at least two different pairs of server
types, wherein each server type runs a different operat-
ing system and a different disaster recovery manager in
an active/active configuration;

controlling data migration, by the SDN controller, between

the pairs of servers in the network;
dynamically reallocating the flows, by the SDN controller,
between the switches and the pairs of servers in the
network based on detecting a fault in the network;

identifying, by the SDN controller, a first pair of the servers
comprising a first primary server and a first secondary
server of a first server type, and a second pair of the
servers comprising a second primary server and a second
secondary server of a second server type, wherein the
first and second primary servers are at a first geographic
location and the first and second secondary servers are at
a second geographic location;

reallocating, by the SDN controller, data between the first

and second primary servers; and

replicating the reallocating, by the SDN controller,

between the first and second secondary servers.

2. The method of claim 1, wherein the SDN controller
integrates functions from a first and second disaster recovery
manager to determine which connections between the servers
are available and prioritized for use as backup or operating
connections, and further comprising:

analyzing, by the SDN controller, a plurality of links

between the switches and the servers to identify active
links and backup links;

establishing, by the SDN controller, an active flow as an

operating connection comprising a plurality of the active
links between a first pair of the servers;

establishing, by the SDN controller, a backup flow as a

backup connection comprising a plurality of the backup
links between the first pair of the servers; and

based on detecting a fault in the active flow, reallocating the

backup flow as the active flow.

3. The method of claim 1, further comprising:

identifying, by the SDN controller, a primary server and a

secondary server in one of the pairs of servers;

10

15

20

25

30

35

40

45

50

55

12

accessing, by the SDN controller, management interfaces
of the primary and secondary servers to retrieve states of
the primary and secondary servers;

comparing, by the SDN controller, the states to identify
state differences between the primary and secondary
servers; and

moving data, by the SDN controller, from the primary
server to the secondary server based on determining that
an update of the secondary server is needed due to the
state differences.

4. The method of claim 3, further comprising:

storing records of the states as state data in the SDN con-
troller.

5. The method of claim 1, further comprising:

monitoring, by the SDN controller, input/output band-
width of the servers; and

reallocating, by the SDN controller, data between the serv-
ers based on detecting an imbalance in the input/output
bandwidth.

6. The method of claim 1, further comprising:

managing workload migration, by the SDN controller,
between the servers.

7. The method of claim 1, further comprising:

adjusting the flows, by the SDN controller, based on net-
work traffic and data movement requirements between
the servers.

8. A computer program product for software-defined net-

working (SDN) disaster recovery, the computer program
product comprising:

atangible storage medium readable by a processing circuit
and storing instructions for execution by the processing
circuit for performing a method comprising:

establishing a plurality of flows, by an SDN controller,
between a plurality of switches and pairs of servers in a
network, including at least two different pairs of server
types, wherein each server type runs a different operat-
ing system and a different disaster recovery manager in
an active/active configuration;

controlling data migration, by the SDN controller, between
the pairs of servers in the network;

dynamically reallocating the flows, by the SDN controller,
between the switches and the pairs of servers in the
network based on detecting a fault in the network;

identifying, by the SDN controller, a first pair of the servers
comprising a first primary server and a first secondary
server of a first server type, and a second pair of the
servers comprising a second primary server and a second
secondary server of a second server type, wherein the
first and second primary servers are at a first geographic
location and the first and second secondary servers are at
a second geographic location;

reallocating, by the SDN controller, data between the first
and second primary servers; and

replicating the reallocating, by the SDN controller,
between the first and second secondary servers.

9. The computer program product of claim 8, wherein the

SDN controller integrates functions from a first and second
disaster recovery manager to determine which connections

between the servers are available and prioritized for use as

60 backup or operating connections, and the instructions for

o

5

execution by the processing circuit further comprise:
analyzing, by the SDN controller, a plurality of links
between the switches and the servers to identify active
links and backup links;
establishing, by the SDN controller, an active flow as an
operating connection comprising a plurality of the active
links between a first pair of the servers;

US 9,246,755 B2

13
establishing, by the SDN controller, a backup flow as a
backup connection comprising a plurality of the backup
links between the first pair of the servers; and

based on detecting a fault in the active flow, reallocating the
backup flow as the active flow.

10. The computer program product of claim 8 wherein the
instructions for execution by the processing circuit further
comprise:

identifying, by the SDN controller, a primary server and a
secondary server in one of the pairs of servers;

accessing, by the SDN controller, management interfaces
of'the primary and secondary servers to retrieve states of
the primary and secondary servers;

storing records of the states as state data in the SDN con-
troller;

comparing, by the SDN controller, the states to identify

state differences between the primary and secondary
servers; and

5

10

15

14

moving data, by the SDN controller, from the primary
server to the secondary server based on determining that
an update of the secondary server is needed due to the
state differences.

11. The computer program product of claim 8, wherein the
instructions for execution by the processing circuit further
comprise:

monitoring, by the SDN controller, input/output band-

width of the servers; and

reallocating, by the SDN controller, data between the serv-

ers based on detecting an imbalance in the input/output
bandwidth.

12. The computer program product of claim 8, wherein the
instructions for execution by the processing circuit further
comprise:

managing workload migration, by the SDN controller,

between the servers; and

adjusting the flows, by the SDN controller, based on net-

work traffic and data movement requirements between
the servers.

